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Background



The why of dark matter



Various evidence

e Cosmic microwave background (CMB)
e Galactic rotation curve

e Galaxy clusters and Gravitational
nsing
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Do we really know the nature?

Dark Matter
26.8%

&

Matter
Dark Energy—» |  Distribution

68.3%

N

Ordinary Matter
4.9%

e Electrically neutral.

e Stable. (Much longer lifetime than the age of the universe) 7 > 10%° s

e Non-relativistic (cold).



Candidates of DM

(Not to scale) T. Lin [arXiv:1904.07915]

QCD axion WDM limit unitarity limit
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(Q-balls, nuggets, etc)
non-thermal dark sectors black holes

bosonic fields sterile v
can be thermal

e Primordial Black Hole (PBH)
® Weakly Interacting Massive Particle (WIMP)

e Axion, Axion Cluster
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WIMPs role in DM search

e DM is produced thermally
from the primordial plasma
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The WIMP Tension

Cross section bounds are
getting stringent o 5
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A simple model UG,
Higgs doublet ¢ 1 2 —I—% +1

Real Slnglet Scalar DM Dark Real Scalar S 1 1 0 —1

e Lagrangian:

|
N - (0,5)" —V(S,®).

w/o Higgs potential)

e Scalar potential:
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A simple model
Real Singlet Scalar DM (contd.)

e Quantum fluctuation: |
10 Higgs
invisible
b — 1 0 10° decay
V2 \v+ h(z) |
10_1
5 -
KA
5 5 < 2
e Masses are: mMj = v Ag, 10-
2 2 2 ]
Mmpy = Mg + Apg¥ 107
D 0 Q2 ~ 0.120 £ 0.001
h -"'Q" = —120A 10 50 100 500 1000 5000 10*
s mpy [GeV]

DM Parameter space



The WIMP Tension
Eg. Real Singlet Scalar DM As = 0.2, my, =125 GeV
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e DM—Nucleon elastic scattering
cross-section:
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pNGB DM for the rescue!



About pNGBs

e Arises from spontaneous +
soft breaking of global
symmetries.

e Produces derivative
interactions i.e., velocity
suppressed.

Collider Search

e Naturally evades the stringent
Direct Detection bound.
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Direct Detection
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Minimal Setup



Original Idea C. Gross, O. Lebedey, 1. Toma, PRL (2017) [arXiv:1708.02253]

SUB). SUR2), U)y | U,
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Original Idea C. Gross, O. Lebedey, 1. Toma, PRL (2017) [arXiv:1708.02253]

Linear representation

| CP:d—>d, §—5°
e Introduce the quantum fluctuations:

M = [
e Higgs bosons acts as mediator
SMHiggs (hy\  ( cos@® sinf\ (h\
ond Higgs \ hy )  \—sinf cosf/)\s /"
DM
N — H; - "' 2 "' m2
¢ DM—DM—HRiggs vertex: e g by ---a = i cosg
. Vg * s



Original Idea C. Gross, O. Lebedey, 1. Toma, PRL (2017) [arXiv:1708.02253]

Direct Detection (tree level)

Dark Matter
‘ 200km/s

Recoil Energy

2mym, 2V, 2
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e Cancellation b/w 2 diagrams in Linear rep.
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Original Idea C. Gross, O. Lebedey, 1. Toma, PRL (2017) [arXiv:1708.02253]
Non linear representation

e Quantum fluctuation: S = —(v_ + s)eX/s

1
V2

2 N —— e’ N — —
Kinetic part Potential part

2
¢ DM—DM—HIiggs vertex <5 1(1 l j) {%XWX UsIs }+0(X4)

e No interaction for on-shell DM production! J



Problems in this original model



Everything is Ad-hoc

1. The Z, symmetry is assumed

2. In general, more U(1l) breaking terms are possible in this setup

2

po IDMga L 6361812 4 ASY 4+ NS2ISP +he

4
= Ad-hoc mass =} —Forbidden by assumed Z,=1 ——U(1) hard break =1

3. Quadratic soft breaking is special for cancellation mechanism
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Domain Wall problem!

e The symmetry flow is

s 7, =25 (DW problem!)

soft
1 (p)NGB

U(1)g

e After SSB, universe settles in one of the vacua
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How to fix these problems?
Gauging the SSB!

Re(5S)

e Gauged SSB solves DW problem

Soft breaking of global sym - pNGB DM
SSB of gauge sym — gauge-equivalent vacua

3
Goldstone Path
//

e Gauge sym restricts the allowed terms -
Im(.S)

/

/

|[Abe et. al. 2020, 2023, 2024, ...]
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Still no viable signal
for pNGB DM



Our approach!



Boosted Dark Matter (BDM)
(DM on Steroid?)

Capture mechanism

4 ¥ : . "
W S R o :
gt g ¢ — 8 e v
e i o %

e DM—N scattering |o,, x ¢*

® Increase momentum — Enhanced signals

e Energy of BDM — EBDM = ¥ My

’R

Lorentz boost factor

BDM produced in celestial bodies.
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BDM production mechanisms

Mpm -~ Mpm Mpm =~ MepMm
BDM
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BDM or X

(a) Semi-annihilation

(b) Decaying or long-lived DM
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BDM signal at neutrino detectors

e The signal can be estimated as

Total exposure time
BDM flux from source
\\A /

Nsignal ~ NViarget X I X ogpyn X Pppw

VA

Number of target nuclei BDM —Nucleon scat. cross-section

e Detector choice based on available boost

Detector Threshold (ymin)
SK/HK 1.51
lceCube/DeepCore 1.55

DUNE 1.25



Our model (STT)

RS, T. Toma, K. Tsumura, JHEP (2025) [arXiv:2504.198806]

(a) Semi-annihilation



Ingredients

e 1 Higgs doublet & 3 Dark Cx Scalars
SUB). SU©2), U(l)y /Uy

Higgs doublet P 1 2 —I—% 0
Dark Cx Scalars Sj 1 1 0 +1
(G =1,2,3) \
e Global U(1), soft breaking: S5, — ¢%4S,, S, = €28, S, —e?ag,
e Dark CP symmetry: -, S, =57, Sy—55 S3— 55

e Permutative exchange symmetry: s « S, S, < S, S, <> S,



Lagrangian

1

L = ”CSM (w/o Higgs potential) A V'LWV,LLV_

Field strength tensors

Uu(l)y: v, U(l)y,: Y

1

VEYY

N — e’
gauge kinetic mixing

SIN €

+1D,S,|" + |D,S,|” + D, S| = V(Sy, S, S5, @)

Covariant derivatives

D,S; = (9, —i[g]V,)S;
j———-=Dark Cx scalars =]
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Scalar Potential

Higgs doublet & 1 9 +% 0
Dark Cx Scalars 9 1 1 0 +1
(j=123)
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e VEVs (most general): (®) = %(g) (51) = U—\/% (52) = U_\/% (S3) = Q\j/%




Vacuum analysis
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Moving to Higgs basis

L (0 Us
e Thus the VEVs become (¢) = 7 (U), (S1) = (S5) = (S5) = 7
e Rotation
21 1 1 1 1 S 1 2.1
Z — 1 1 W CUQ y /US 1 —|_ SQ — US O _|_ 22
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>lq V3 1w w 4 1 S V2 0 g
() — 62277/3
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e Quantum fluctuations: X; = \@( s +81(2) +iz(z)), @ ﬁ(v+h(:c))
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e Residual sym:



Eaten by U(1),,

Dark Matter dark gauge 2 L (1)

boson Z’ ZZ = miy + 3 >
Dark Higgs
Mixesto "
hy, h, \ Cx pNGB DM
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Residual sym. —_— > _ 2 _ 2
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v/,

Signature of the model
Numerical result
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Semi-annihilation channels

Semi-annihilation
dominates abundance

Viable parameter space.

Original]: Gross et al., 2017
AHT]: T. Abe, Y. Hamada, K. Tsumura, JHEP (2024).
STT]: This semi-annihilation model




Results » A
< v BDM f
Not enough! o ot — By by
e Cross-section well below current sensitivity of DUNE. A \
2 2.2 20 2 4 m2 : 2 2 \4
o /v sin v (mN> | b\ (8 —mpy —my) oy
el 247 m%l v, v m%Q g3 BN
/ 2 2 4 5 N\ 2 4
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~ 1074 x — — al 1 - S ox yted, x 10728
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BDM DM Z’
2?2 V= = <-=125 = \/1~O.6
® Reason: My 4m? A UBDM "

But, suffers the Yukawa penalty
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Conclusion



Summary

Theoretical achievement

e Unique & robust Z; residual pNGB DM model — Facilitates semi-
annihilation processes

e Semi-annihilation dominates relic abundance.
Key findings

e Analyzed pNGB BDM produced via semi-annihilation

e Boost limited to y = 1.25 in this setup — insufficient cross-section.



Outlook

Challenge
e Overcome the boost limitation
e Require a mechanism to produce BDM with higher kinetic energy
Current Status

e Constructed a multi—-component pNGB BDM model with a
confirmed viable parameter space

oM ™MpMm ~ MBDM  BDM

MpM

® Achieves high boost v=—
BDM

e Finalizing the signal aspects

(b) Annihilation of DM



